Akademik

МАССА
МАССА
МАССА – 1)в естественнонаучном смысле количество вещества, содержащегося в теле; сопротивление тела изменению своего движения (инерция) называют инертной массой; физической единицей массы является инертная масса 1 см3 воды, что составляет 1 г (грамм массы). Каждое тело обладает также тяжелой массой, которая количественно соответствует инертной массе и которая определяет явление гравитации; см. также Энергия, Поля теория ; 2) в социологическом смысле группа людей, внутри которой индивиды до известной степени теряют свою индивидуальность и благодаря взаимному влиянию приобретают схожие чувства, инстинкты, побуждения, волевые движения (см. КОЛЛЕКТИВ). Массы образуются под давлением экономической или духовной необходимости («омассовление» индивидов). Образуется и действует масса в соответствии с закономерностью, изучение которой является задачей психологии масс и социологии. Буржуазное общество уже примерно с сер. 19 в., вследствие все более быстрого роста населения, стало приходить к убеждению, что оно преобразуется в общество масс. Эту форму общества многие социологи считали единственно возможной для европейской (т.е. для «современной») сферы цивилизации. Для такого общества характерны: массовая потребность в материальных и культурных благах и соответствующее массовое потребление, которое должно направляться частично техническим коллективом, частично государством (которое со своей стороны принимает характер организации масс). Это развитие ведет «в своем конечном результате к прогрессирующей всеобщей механизации, автоматизации и распределению функций во всех областях жизни, к законченной функциональной системе, состоящей из вещной аппаратуры и человеческих носителей этих функций. Все воспринятые под этим углом зрения явления (т.е. экономические, социальные и культурные) в возрастающей степени принимают характер чего-то субстанционально-опустошенного, в ценностном отношении нейтрального, короче говоря – чисто функциональный характер. Эти явления, т.о., выступают в жизни современного общества только в качестве функций др. функций, в совершенно определенных связях и процессах. Но они уже не обладают своей собственной, автономной силой воздействия и способностью самостоятельно формировать др. явления.

Философский энциклопедический словарь. 2010.

МА́ССА
(от лат. massa – глыба, масса) – мера инертных и гравитац. свойств материальных объектов. Филос. значение понятия М. определяется его тесной связью с категориями материи, движения, пространства и времени. Исторически понятие М. формировалось в связи с понятием материи, ее меры и движения. Поиски меры материи связаны с определ. идеями о ее структуре и сохранении. Античный атомизм трактовал принцип неуничтожимости и несотворимости материи как сохранение неделимых, вечно существующих атомов. Опираясь на идеи атомизма, Ньютон ввел понятие М., или количества материи, как меры таковой, пропорциональной плотности и объему тела. Задача определения М. тела в принципе сводится здесь к тому или иному способу счета неделимых частиц материи в единице объема.
Поиски законов движения материи вели к открытию фундаментальных свойств материальных объектов. Тела отличаются друг от друга не только числом частиц (количество материи), но, в частности, и свойством и н е р ц и и. Инерция трактовалась в классич. физике как свойствоатрибут, присущий атому и, следовательно, макроскопич. телу, составленному из этих атомов. М. как число атомов в данном теле естественно выступала как мера инерции тела. Инерция рассматривалась как косность материи, как ее полная пассивность по отношению к движению. Принцип инерции позволил придать понятию M. форму физич. величины, измеряемой в эксперименте.
Понятие М. формировалось и в связи с исследованием гравитационных взаимодействий. Понятие гравитационной М. по своему содержанию не зависимо от понятия инертной М. Проблема состоит в том, чтобы выяснить, откуда и на каких основаниях было введено в закон тяготения понятие гравитационной М. Инертная и гравитационная М. пропорциональны, а при соответств. выборе единиц равны. На этом основании можно было бы считать, как иногда допускается, что понятие M. берется из второго закона Ньютона
МАССА
Однако такое решение вопроса логически несостоятельно, ибо сама возможность пропорциональности инертной и гравитационной М. реализуется только тогда, когда введено понятие гравитационной М. В силу этого понятие гравитационной М. могло быть введено только на основаниях, лежащих вне системы механич. понятий. И действительно, открытию законов механич. движения предшествовало открытие закона тяготения. Заслуга Ньютона заключалась именно в том, что он смело ввел понятие М., опираясь на атомистич. идеи. Формирование понятия М. способствовало открытию закона тяготения:
МАССА
Т.о., понятие М. уже в классич. физике складывается из трех структурных элементов общего понятия - М. как число материальных частиц, М. гравитационная и М. инертная. Каждый из них имеет относительно независимое содержание. Их связь физически проявляется в упомянутой пропорциональности гравитационной и инертной М.
В общей теории относительности пропорциональность инертной и гравитационной М. послужила исходным принципом (принцип эквивалентности) в построении совр. теории гравитации. Эта пропорциональность, в свою очередь, может быть понята в свете данных совр. науки на основе единства пространства и времени. Гравитация, согласно теории относительности, взаимосвязана с геометрич. свойствами пространства. Инертная М., в свою очередь, оказывается в тесной связи со временем. Глубокая связь пространства и времени может служить теоретич. объяснением родства инертной и гравитационной М. Развитие понятия М. определялось в процессе познания развитием научных знаний о видах материи и ее структуре. Исследование электромагнитных явлений привело к открытию нового вида материи – электромагнитного поля. Совр. физика позволяет рассматривать и другого рода поля как материальные объекты. В связи с исследованием движения электрич. заряженных частиц в электромагнитном поле возникла необходимость ввести понятие электромагнитной М. При этом оказалось, что электромагнитная М., напр., электрона изменяется в зависимости от скорости его движения. Это изменение электромагнитной М. открывало возможность объяснить инерцию на пути исследования электромагнитных процессов. Предполагалось, что у электрона остается механич. неизменная М. наряду с электромагнитной М., обусловленной его электрич. зарядом. При этом фактич. зависимость суммарных инертных свойств электрона экспериментально, как полагали, не должна совпадать с законом изменения одной только электромагнитной М., ибо электромагнитная М. – величина изменяющаяся, а механич. М. электрона считалась в то время неизменной. Но в экспериментах, поставленных в начале века, электроны вели себя так, словно их М. имеет целиком полевую природу. Это послужило основанием для заявлений о полном сведении М. электрона к электромагнитной М. А т.к. с понятием неизменной М. в классич. смысле связывалось представление о материи, то обнаруженные факты дали повод говорить о сведении материи к электричеству. В дальнейшем, однако, выяснилось, что сущность М. электрона, как и др. частиц, не исчерпывается электромагнитной природой. Это следовало уже из теории относительности. Эйнштейн открыл общий закон изменения М. со скоростью движения, применимый для любых частиц, обладающих собств. М., вне зависимости от наличия или отсутствия у них электрич. заряда. Этот закон по математич. форме совпадает с законом зависимости электромагнитной М. от скорости движения. Из него следует, что поскольку закон зависимости массы электрона один и тот же как для механич., так и для электромагнитной М., то вывод, что М. электрона имеет исключительно электромагнитную природу, нельзя считать достоверным. Совр. квантовая теория полей показывает, что не только электромагнитное поле, но и поля другой природы вносят нек-рый вклад в полную М. частицы; однако она не дает оценки относит. вклада тех или иных полей в М. частицы. Вопрос о природе М. в этом смысле остается нерешенной проблемой.
Общий закон зависимости М. от скорости движения указывает на глубокую связь М. с энергией. Известно, что чем больше скорость тела, тем больше кинетич. энергия и вместе с тем, как это следует из закона зависимости М. от скорости, тем больше М. тела. В силу закона взаимосвязи М. и энергии (Е=mс2) М. оказывается не только мерой инерции и гравитации, но может выступать и как мера энергии. Закон изменения М. тела со скоростью его движения и закон взаимосвязи М. и энергии внесли изменение в понятие М. и в др. отношении. Существуют частицы, имеющие М. покоя, или собств. М. При движении этих частиц с нек-рой скоростью у них возникает дополнит. М., к-рая при приближении этой скорости к скорости света неограниченно возрастает. Общая М. таких частиц складывается из этих двух родов масс. М. частицы в системе, связанной с самой частицей, будет иметь вполне определ. фиксиров. значение. Это и будет собств. М. частицы, являющаяся ее специфич. характеристикой, отличающей данную частицу от других. Но т.к. частицы движутся по отношению к др. системам, то они вместе с тем обладают еще и динамич. массой. М. покоя инвариантна по отношению к пространств. перемещениям частицы как чего-то целого, в то время как динамич. масса – изменяющаяся в этом отношении величина. Однако М. покоя – не абсолютно неизменная величина. Она неинвариантна по отношению к структурным изменениям материи. Если частицы с определ. собств. М. входят как часть в целое структурное образование, то собств. М. этого целого не равна простой сумме собств. М. частиц, составляющих это целое. Ядро имеет вполне определ. по величине собств. М., к-рая, однако, не равна сумме собств. М. составляющих его частей – протонов и нейтронов. Это изменение собств. М. получило название дефекта М. Таким образом, М. покоя оказывается изменяющейся величиной и величина этого изменения служит характеристикой структурных связей элементарных частиц, образующих более сложные устойчивые дискретные единицы материи – ядра, ионы, атомы, молекулы. Величина дефекта М. может быть выражена через величину энергии. Это обстоятельство служит порой поводом к тому, чтобы явление дефекта М. описывать как явление превращения М. или даже материи в энергию. Эти утверждения противоречат фактич. содержанию понятий M. и энергии. Такой вывод можно было бы сделать лишь в том случае, если, во-первых, под М. понимать только М. покоя и, во-вторых, если рассматривать энергию ядерных реакций вне связи с М., как чистую энергию. Обнаружение изменчивости динамич. М. со скоростью движения, выяснение изменчивости собств. М. в связи со структурными изменениями материи не отменяет общего понятия М., но выявляет лишь сложный состав этого понятия. Подобно тому, как общее понятие энергии предполагает специфич. формы ее проявления, общее понятие М. также может проявляться в специфич. формах. Если при этом учитывать закон взаимосвязи М. и энергии, то неизбежен вывод, что не существует чистой энергии как таковой. Энергия в любой форме всегда связана с соответств. типом М. В силу этого нет логич. оснований утверждать, что M., a тем более материя, может превращаться в энергию. М. и энергия – два взаимосвязанных, не отделимых друг от друга свойства материальных объектов. В свете совр. атомистики М. уже не может рассматриваться как количество материи, ибо элементарные частицы не являются неизменными структурными элементами материи, как это представлялось в классич. атомизме. Можно говорить лишь о различных аспектах единого понятия М. – структурном, инерционном, гравитационном.
М. может выступать в качестве меры инерции и гравитации в силу того, что она подчиняется соответствующему закону сохранения. При этом закон сохранения М. может выполняться лишь для полной М., включающей в себя все специфич. типы М. – М. покоя, динамич. М. и М., соответствующую дефекту М. в ядерных реакциях. Дефект может реализоваться либо в форме динамич. М., либо в форме М. квантов поля, напр. М. фотонов. В силу этого можно говорить о законе сохранения и превращения массы. Т.к. М. выступает как мера фундаментальных свойств материи – инерции и гравитации, а энергия есть мера движения, в законе взаимосвязи M. и энергии проявляется неразрывность материи и движения.
Лит.: Энгельс Ф., Диалектика природы, М., 1955; Ленин В. И., Материализм и эмпириокритицизм, Соч., 4 изд., т. 14; Max Э., Механика, [СПБ ], 1909; Эйнштейн Α., Зависит ли инерция тела от содержащейся в нем энергии, в кн.: Принцип относительности. Сб. работ классиков релятивизма, М.–Л., 1935; Ньютон И., Матем. начала натуральной философии, в кн.: Крылов А. Н., Собр. трудов, т. 7, М., 1936; Декарт Р., Начала философии, Избр. произв., [М. ], 1950; Ломоносов М., [Письмо ] Л. Эйлеру, Избр. филос. произв., [М. ], 1950; Усп. физич. наук, т. 48, вып. 2, 1952; Лоренц Г. Α., Теория электронов, пер. с англ., 2 изд., М., 1956; Овчинников Η. Φ., Понятия массы и энергии в их историч. развитии и филос. значении, М., 1957; Павлов А. И., О количественной определенности материи физ. объектов, в сб.: Уч. зап. Череповец. пед. ин-та, т. 2, [Вологда ], 1959; Jammer M., Concepts of mass in classical and modern physics, Camb. (Mass.), 1961.
H. Овчинников. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. . 1960—1970.


.