- АВТОЭЛЕКТРОННАЯ ЭМИССИЯ
-
(туннельная эмиссия, полевая эмиссия), испускание эл-нов проводящими твёрдыми и жидкими телами под действием внеш. электрич. поля высокой напряжённости E(=107 В/см) у их поверхности. Механизм А. э.— туннельное прохождение эл-нов сквозь потенц. барьер на границе проводник — непроводящая среда (см. ТУННЕЛЬНЫЙ ЭФФЕКТ). Наиболее полно изучена А. э. металлов в вакуум. Плотность тока А. э. в этом случае определяется приближённой ф-лой:работа выхода эмиттера (j — потенциал работы выхода, е — заряд эл-на). Характерные св-ва А. э.: высокие j (до 1010 А/см2) и экспоненциальная зависимость j от Е и Ф. При j>106 А/см2 могут наблюдаться отклонения зависимости lgj=f(1/E) от линейной, что связывают с влиянием объёмного заряда или же с особенностями формы потенц. барьера. При j=108—1010 А/см2 А. э. может перейти в вакуумный пробой с разрушением эмиттера. Этот переход сопровождается интенсивной, т. н. взрывной электронной эмиссией. А. э. слабо зависит от темп-ры Т, малые отклонения от зависимости (*) с ростом Т пропорц. T2, С дальнейшим ростом Т и понижением Е т. н. термоавтоэлектронная эмиссия переходит в термоэлектронную эмиссию, усиленную полем за счёт Шоттки эффекта.Энергетпч. спектр эл-нов, вылетающих из металла в случае А. э., весьма узок (полуширина =0,1 эВ). Форма спектра чувствительна к распределению эл-нов по энергиям внутри эмиттера, а также к наличию примесей на его поверхности. Для А. э. полупроводников характерны внутр. ограничения j, связанные с меньшей концентрацией эл-нов, дополнит. влияние поля на j из-за проникновения поля в ПП, а также термо- и фоточувствительность ПП, влияющая на j.Автоэмиттеры (холодные катоды) имеют большую кривизну поверхности (острия, лезвия, выступы и т. п.). Анод, совмещённый с люминесцирующим экраном, превращает одноострийный автоэмиссионный диод в эмиссионный безлинзовый электронный микроскоп (проектор).
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- АВТОЭЛЕКТРОННАЯ ЭМИССИЯ
-
(полевая эмиссия, электростатическая эмиссия, туннельная эмиссия) - испускание электронов проводящими твёрдыми и жидкими телами под действием внеш. электрич. поля Е достаточно высокой напряжённости ( Е~ 10 В/см). А. э. обнаружена в 1897 Р. У. Вудом. В 1929 Р. Э. Милликен и Ч. К. Лоритсен установили линейную зависимость логарифма плотности тока j А. э. от 1/E вида ( А и В - константы). В 1928-29 Р. Фаулер и Л Нордхейм дали теоретич. объяснение А. э. на основе туннельного эффекта. Термин "А. э." отражает отсутствие энергетич. затрат на возбуждение электронов, свойственных др. видам электронной эмиссии (в зарубежной лит-ре чаще употребляется термин "полевая эмиссия").
При А. э. электроны преодолевают потенц. барьер на границе эмиттера, не проходя над ним за счёт ки-нетич. энергии теплового движения, как при термоэлектронной эмиссии, а путём туннельного просачивания сквозь барьер, сниженный и суженный электрич. полем. Электронная волна (см. Волны де Бройля), встречая на пути потенц. барьер, частично отражается и частично проходит сквозь него (рис. 1). По мере увеличения внешнего ускоряющего поля понижается высота потенц. барьера над уровнем Ферми . Од-новрем. уменьшается ширина барьера.
Рис. 1. Потенциальная энергия электрона вблизи поверхности металла - в отсутствие электрического поля. - обусловленная слабым внешним электрическим полем; - более сильным полем; - энергия, соответствующая отсутствию сил изображения в случае сильного поля; - энергия Ферми; х 1 -х 2- ширина потенциального барьера при наличии внешнего поля, -работа выхода.
В результате увеличивается число электронов, просачивающихся в единицу времени сквозь барьер, соответственно увеличивается т. н. прозрачность барьера D (отношение числа электронов, прошедших сквозь барьер, к полному числу электронов, падающих на барьер) и соотв. плотность тока А. э.
Теоретич. расчёт плотности тока j А. э. приводит к ф-ле
,где е - заряд электрона; - концентрация электронов проводимости в проводнике с энергией , связанной с компонентой импульса, нормальной к поверхности; Е - напряжённость электрич. поля у поверхности эмиттера. Из (1) следует зависимость j от концентрации электронов в проводнике и их энергетич. распределения , а также от высоты и формы барьера, к-рые определяют его прозрачность D.
А. э. из металлов в вакуум изучена наиб. полно. В этом случае j следует т. н. закону Фаулера - Норд-хейма:
(2),
где .
Здесь т - масса электрона, -потенциал работы выхода металла, t и -табулированные ф-ции аргумента , , . Подставив значения констант я положив t2 (у) = 1,1, а , получим из (2) приближенную ф-лу
(3)
(j, Е и . в А/см 2, В/см и эВ, см. табл.). Ф-ла (2) получена в след. предположениях: свободные электроны в металле подчиняются статистике Ферми - Дирака; вне металла на электрон действуют только силы зеркального изображения.
Значения для некоторых Е и , рассчитанные по формуле (2)
= 2,0
= 4,5
= 6,3
1,0
2,98
2,0
-3,33
2,0
- 12,90
1,2
4,45
3,0
1,57
4,0
-0,88
1,4
5, 49
4,0
4,06
6,0
3,25
1,6
6,27
5,0
5,59
8,0
5,34
1,8
6,89
6,0
6,62
10,0
6,66
2,0
7,40
7,0
7,36
12,0
7,52
2,2
7,82
8,0
7,94
14,0
8,16
2,4
8, 16
9,0
8,39
16,0
8,65
2,6
8,45
10 ,0
8,76
18,0
9,04
12,0
9,32
20,0
9,36
Прозрачность барьера D (, Е )рассчитывалась в квазиклассическом приближении.
Несмотря на упрощения, ф-ла Фаулера - Нордхейма хорошо согласуется с экспериментом. Характерными свойствами А. э. из металлов являются высокие предельные плотности тока j (вплоть до 1010 А/см 2) и экспоненц. зависимость j от и Е. При j=106- 10' А/см 2 наблюдается нек-рое уменьшение j по сравнению с (2). Это связано с влиянием объёмного заряда или с деталями формы потенц. барьера. Рост тока j с повышением напряжения V заканчивается при j= 108-1010 А/см 2 вакуумным пробоем и гибелью эмиттера. Этому предшествует более интенсивная, но кратковременная взрывная электронная эмиссия.
А. э. слабо зависит от темп-ры Т. Малые отклонения j от (2) с ростом Т прямо пропорц. Т 2:
(4)
Ф-ла (4) верна с точностью ~ 1% для приращений тока ~ 18%. Для отношения справедлива т. н. ф-ла Мёрфи и Гуда
(5).
Для больших изменений j(Т )существуют более громоздкие ф-лы и графики, полученные численными расчётами.Рис. 2. Энергетический спектр автоэлектронов при разных температурах Т и внешних полях Е для Ф = 4,5 эВ; - уровень покоящегося электрона в вакууме.
При повышении Т и снижении Е А. э. (термоавтоэлектронная эмиссия) переходит в термоэлектронную эмиссию, усиленную полем ( Шоттки аффект). Энергетич. спектр автоэлектронов из металла узок (рис. 2). Полуширина а распределения по полным нергиям при Т=0К определяется ф-лой
(6)
При =4,4 эВ и lg j от 0 до 7 варьируется от 0,08 до 0,2 эВ. Величина с повышением Т возрастает, в частности при 300 К (в том же диапазоне j) изменяется от 0,17 до 0,3 эВ. Форма спектра отклоняется от теоретической (в модели свободных электронов) при сложной конфигурации ферми-поверхности или при наличии адсорбир. молекул и атомов на поверхности, особенно если они неметаллич. происхождения (напр., нек-рых органич. молекул, к-рые играют роль волноводов для электронных волн).
Отбор тока при низких темп-pax приводит к нагреванию эмиттера, т. к. уходящие электроны уносят энергию в ср. меньшую, чем энергия Ферми , тогда как вновь поступающие в металл через контакт электроны имеют энергию (Ноттингема эффект). С возрастанием Т нагрев сменяется охлаждением - эффект меняет знак, проходя через т. н. темп-ру инверсии, соответствующую симметричному относительно уровня Ферми распределению вышедших электронов по полным энергиям. При больших Т, когда эмиттер разогревается за счёт джоулевых потерь, инверсия эффекта Ноттингема в нек-рых пределах препятствует лавинному саморазогреву и стабилизирует А. э.
А. э. из полупроводников. Особенности А. э. из полупроводников связаны с неск. факторами: 1) элект-рич. поле глубоко проникает в полупроводник, что приводит к смещению энергетич. зон, к изменению вблизи поверхности концентрации носителей заряда и их энергетич. спектра; 2) концентрация электронов во много раз меньше, чем в металле, что ограничивает величину j, и она сильно зависит от внеш. воздействий (темп-pa, освещение и др.); 3) поверхностные состояния носителей заряда могут сказываться на характеристиках А. э.; 4) вольт-амперные характеристики и энергетич. спектры автоэлектронов отражают зонную структуру полупроводников; 5) протекающий через полупроводник ток может приводить к перераспределению потенциала на нём, а также влиять на энергетич. спектр электронов. Все эти особенности привлекаются для объяснения наблюдаемых вольт-амперных характеристик и энергетич. спектров автоэлектронов из полупроводников.
Автоэлектронные эмиттеры (катоды) делают в виде поверхностей с большой кривизной: острия, лезвия, шероховатые края фольг и плёнок, торцы нитей и т. п. Для отбора относительно больших токов используют многоострийные системы, многоэмиттерные системы на краях плёнок и фольг и т. п. В зависимости от размеров эмиттеров и расстояния до анода напряжение V, обеспечивающее величину электрич. поля Б, достаточную для возникновения А. э., может составлять от сотен В до неск. десятков кВ.
Стабильность А. э. связана с постоянством распределения вдоль катода и т. н полевого множителя Оба эти фактора могут изменяться под влиянием адсорбции и миграции атомов или молекул как примесей, так и материала эмиттера. Напр., локальные значения возрастают в результате миграции поверхностных атомов под действием сильного электрич. поля (перестройка в поле) или в результате "изъязвления" поверхности при ионной бомбардировке. Повышение стабильности А. э. достигается улучшением вакуума, очисткой эмиттера, использованием импульсного напряжения (для ослабления миграции атомов в электрич. поле и саморазогрева эмиттера), умеренным подогревом эмиттера (для защиты от адсорбции и для "заглаживания" дефектов в местах удара ионов), применением слабо адсорбирующих материалов (нек-рые карбиды, бориды, нитриды металлов, углерод). Исследование А. э. из монокристаллов тугоплавких металлов, а также хим. соединений с металлич. проводимостью ( и др.) в сверхвысоком вакууме (поверхность эмиттера остаётся чистой в течение часов или суток) позволило уточнить параметры А. э. для этих веществ.
Применение. Металлич. автоэлектронные эмиттеры используются в тех случаях, когда требуется высокая плотность тока j, т. е. там, где необходимы большие токи либо концентрир. электронные пучки. Преимуществами автоэлектронных эмиттеров являются отсутствие энергетич. затрат на подогрев и безынерци-онность. Металлич. автоэлектронные эмиттеры (обычно многоострийные) применяются в мощных сильноточных устройствах. Нелинейность вольт-амперной характеристики используется в устройствах СВЧ (преобразователи частоты, усилители, детекторы сигналов). Автоэмиссионный эмиттер в качестве интенсивного точечного источника электронов применяется в растровых микроскопах. Он перспективен в рентгеновской и обычной электронной микроскопии, в рентгеновской дефектоскопии, в рентгеновских микроанализаторах и электронно-лучевых приборах. Автоэмиссионные эмиттеры могут также употребляться в микроэлектронных устройствах и в чувствит. индикаторах изменения напряжения.
Автоэлектронный катод в сочетании с анодом, совмещённым с люминесцирующим экраном, превращает такой автоэмиссионный диод в эмиссионный электронный микроскоп. На его экране можно наблюдать картину углового распределения тока А. э. с острия при высоких увеличениях и разрешающей способности (см. Электронный проектор).
Полупроводниковые автоэмиссионные эмиттеры перспективны как чувствит. приёмники ИК-излучения. Многоострийные системы эмиттеров служат основой для мозаичных систем в преобразователях ИК-изоб-ражений.
В высоковольтных вакуумных устройствах А. э. может играть и "вредную роль", способствуя утечкам тока, развитию вакуумного пробоя. Для подавления А. э. в этих случаях снижают поле у поверхности электродов (уменьшая их кривизну), подбирают расположение электродов и распределение потенциалов, а также повышают работу выхода из поверхности (подбором материала или покрытия).
Лит.: Елинсон М. И., Васильев Г. Ф., Автоэлектронная эмиссия, М., 1958: Фишер Р., Нойман X., Автоэлектронная эмиссия полупроводников, пер. с нем., М., 1971; Ненакаливаемые катоды, М., 1974; Wood R. W., A new form of cathode discharge and the production ox X-rays, together with some notes of diffraction, "Phys. Rev.", 1897, v. 5, № 1, p. 1. Mi11ikan Л. A., Lauritsen С. С., Temperature dependence of field currents, там же, 1929, v. 33, Mi 4, p. 598: Fowler R. H., Nоrdheim L., Electron emission in intense electric fields, "Proc. Roy. Soc.", 1928, ser. A, v. 119, № 781, p. 173; Gооd R. H., Mu11er E. W., Field emission. in: Handbuch der Physik, Bd 21, В.- Guttingen - Heidelberg, 1956. В. Н. Шредник.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.