- Термин
- квантовый компьютер
- Термин на английском
- quantum computer
- Синонимы
- квантовое вычислительное устройство
- Аббревиатуры
- КК
- Связанные термины
- Определение
- гипотетическое вычислительное устройство, которое при выполнении операций с данными использует квантово-механические эффекты, такие как суперпозиция и запутанность (сцепленность) квантовых состояний.
- Описание
- Квантовые свойства объектов могут использоваться для представления данных и для выполнения операций над этими данными – это ключевой принцип, лежащий в основе функционирования квантового компьютера (КК).
Идея квантовых вычислений, впервые высказанная Ю. И. Маниным и Р. Фейнманом, состоит в том, что квантовая система из N двухуровневых квантовых элементов (квантовых битов или кубитов) имеет 2N линейно независимых состояний, а, значит, вследствие принципа квантовой суперпозиции (суперпозиции состояний, которые не могут быть реализованы одновременно с классической точки зрения, т.е. суперпозиции альтернативных взаимоисключающих состояний) пространством состояний такого квантового регистра является 2N-мерное гильбертово пространство (евклидово пространство, допускающее бесконечную размерность). Операция в квантовых вычислениях соответствует повороту вектора состояния регистра в этом пространстве. Таким образом, квантовое вычислительное устройство размером L кубит может выполнять параллельно 2L операций, т.е. одна операция над группой кубитов затрагивает все значения, которые она может принимать, в отличие от классического бита. Это и обеспечивает беспрецедентный параллелизм вычислений [1].
Упрощённая схема вычисления на квантовом компьютере выглядит так: берется система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством базовых квантовых операций. В конце измеряется значение, что и является результатом работы компьютера.
При реализации описанных процедур кубиты системы не должны взаимодействовать с внешним миром, за исключением приложенных к этому набору кубитов (т.е. квантовому компьютеру) классических сил. Если же кубиты взаимодействуют с частицами, обладающими собственными степенями свободы (например, с фотонами, излученными при операциях над кубитами), то происходит так называемое квантовое запутывание: кубиты и частицы начинают описываться одной волновой функцией, содержащей много лишних переменных. Результат измерений над кубитами будет в этом случае зависеть от неконтролируемого состояния «паразитной» степени свободы, за которою «запутался» кубит; такое явление называется сбоем фазы, или декогерентностью.
Декогерентность - одно из важных препятствий для реализации КК; другое серьезное препятствие – извлечение результатов вычисления. При выполнении одного измерения каждый из кубитов обязательно оказывается в одном из возможных состояний, т.е. при каждом измерении суперпозиционное состояние безвозвратно коллапсирует к какому-то одному состоянию из их полного числа. Выход заключается в том, чтобы проводить вычисления, факторизованные по отдельным кубитам; только в этом случае можно проводить измерения последовательно над каждым кубитом в отдельности, не портя квантовые состояния остальных.
Выделяют несколько основных требований к универсальному квантовому компьютеру [2]:
1. КК должен состоять из большого числа элементарных кубитов. Таковыми могут быть не только элементарные спины электронов, но и сложные системы, построенные из множества частиц; главное требование при этом – эволюция таких систем должна описываться аналогичными квантовыми состояниями.
2. Операции с кубитами должны быть такими, чтобы обеспечивать возможность «запутывать» состояния каждой пары кубитов и производить изменение квантового состояния каждого отдельного кубита. Должна быть также физическая возможность менять параметры этого воздействия на кубиты во времени по заданному закону.
3. Каждый кубит должен быть с высокой надежностью изолирован от внешнего мира, т.е. время декогерентности должно быть много больше времени выполнения самих вычислений.
4. Необходимо уметь производить в конце процесса вычислений сами измерения, т.е. иметь возможность выяснить, в каком состоянии оказался каждый из кубитов системы к концу действия алгоритма.
Следует отметить, что все описанные условия достаточно плохо согласуются друг с другом в реальном физическом мире. Так, изоляция кубитов от внешней среды в процессе вычислений противоречит возможности точно управлять значениями параметров воздействия на эти кубиты, а также возможности эффективно измерять конечные состояния. Именно поэтому задача реализации КК является исключительно сложной. - Авторы
- Разумовский Алексей Сергеевич, к. ф.-м. н
- Ссылки
- Квантовый компьютер / Википедия URL: http://ru.wikipedia.org/wiki/Квантовый_компьютер
- Фейгельман М. Идейный фундамент / © ООО «Компьютерра–Онлайн», 1997 — 2009. URL: http://offline.computerra.ru/offline/2001/414/12932/index.html
- Иллюстрации
- Теги
- Разделы
- Объекты для квантовых вычислений и квантовых телекоммуникаций
(Источник: «Словарь основных нанотехнологических терминов РОСНАНО»)
Энциклопедический словарь нанотехнологий. — Роснано. 2010.